Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Anim Microbiome ; 4(1): 42, 2022 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-35729615

RESUMO

BACKGROUND: The welfare of farmed fish is influenced by numerous environmental and management factors. Fish skin is an important site for immunity and a major route by which infections are acquired. The objective of this study was to characterize bacterial composition variability on skin of healthy, diseased, and recovered Gilthead Seabream (Sparus aurata) and Barramundi (Lates calcarifer). S. aurata, which are highly sensitive to gram-negative bacteria, were challenged with Vibrio harveyi. In addition, and to provide a wider range of infections, both fish species (S. aurata and L. calcarifer) were infected with gram-positive Streptococcus iniae, to compare the response of the highly sensitive L. calcarifer to that of the more resistant S. aurata. All experiments also compared microbial communities found on skin of fish reared in UV (a general practice used in aquaculture) and non-UV treated water tanks. RESULTS: Skin swab samples were taken from different areas of the fish (lateral lines, abdomen and gills) prior to controlled infection, and 24, 48 and 72 h, 5 days, one week and one-month post-infection. Fish skin microbial communities were determined using Illumina iSeq100 16S rDNA for bacterial sequencing. The results showed that naturally present bacterial composition is similar on all sampled fish skin sites prior to infection, but the controlled infections (T1 24 h post infection) altered the bacterial communities found on fish skin. Moreover, when the naturally occurring skin microbiota did not quickly recover, fish mortality was common following T1 (24 h post infection). We further confirmed the differences in bacterial communities found on skin and in the water of fish reared in non-UV and UV treated water under healthy and diseased conditions. CONCLUSIONS: Our experimental findings shed light on the fish skin microbiota in relation to fish survival (in diseased and healthy conditions). The results can be harnessed to provide management tools for commercial fish farmers; predicting and preventing fish diseases can increase fish health, welfare, and enhance commercial fish yields.

2.
Acta Derm Venereol ; 101(11): adv00603, 2021 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-34515801

RESUMO

The bacterial community that colonizes the human face imparts physiochemical and physiological effects on the facial skin. These skin-microbe interactions impact dermatological, cosmetic and skincare applications due to the centrality of the human face in daily interactions. However, fine-scale characterization of the human face skin microbiome is lacking. Using 16S rRNA sequencing and 3D cartography, this study plotted and characterized the facial skin microbiome in high- definition, based on 1,649 samples from 12 individuals. Analysis yielded a number of novel insights, including that of the relative uniformity of skin microbiome composition within skin sites, site localization of certain microbes, and the interpersonal variability of the skin microbiome. The results show that high-resolution topographical mapping of the skin microbiome is a powerful tool for studying the human skin microbiome. Despite a decade of skin microbiome research, there is still much to be discovered.


Assuntos
Microbiota , Bactérias/genética , Face , Humanos , RNA Ribossômico 16S/genética , Pele
3.
Front Microbiol ; 12: 656269, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34322096

RESUMO

Background: The evolutionary relationships between plants and their microbiomes are of high importance to the survival of plants in general and even more in extreme conditions. Changes in the plant's microbiome can affect plant development, growth, fitness, and health. Along the arid Arava, southern Israel, acacia trees (Acacia raddiana and Acacia tortilis) are considered keystone species. In this study, we investigated the ecological effects of plant species, microclimate, phenology, and seasonality on the epiphytic and endophytic microbiome of acacia trees. One hundred thirty-nine leaf samples were collected throughout the sampling year and were assessed using 16S rDNA gene amplified with five different primers (targeting different gene regions) and sequenced (150 bp paired-end) on an Illumina MiSeq sequencing platform. Results: Epiphytic bacterial diversity indices (Shannon-Wiener, Chao1, Simpson, and observed number of operational taxonomic units) were found to be nearly double compared to endophyte counterparts. Epiphyte and endophyte communities were significantly different from each other in terms of the composition of the microbial associations. Interestingly, the epiphytic bacterial diversity was similar in the two acacia species, but the canopy sides and sample months exhibited different diversity, whereas the endophytic bacterial communities were different in the two acacia species but similar throughout the year. Abiotic factors, such as air temperature and precipitation, were shown to significantly affect both epiphyte and endophytes communities. Bacterial community compositions showed that Firmicutes dominate A. raddiana, and Proteobacteria dominate A. tortilis; these bacterial communities consisted of only a small number of bacterial families, mainly Bacillaceae and Comamonadaceae in the endophyte for A. raddiana and A. tortilis, respectively, and Geodematophilaceae and Micrococcaceae for epiphyte bacterial communities, respectively. Interestingly, ~60% of the obtained bacterial classifications were unclassified below family level (i.e., "new"). Conclusions: These results shed light on the unique desert phyllosphere microbiome highlighting the importance of multiple genotypic and abiotic factors in shaping the epiphytic and endophytic microbial communities. This study also shows that only a few bacterial families dominate both epiphyte and endophyte communities, highlighting the importance of climate change (precipitation, air temperature, and humidity) in affecting arid land ecosystems where acacia trees are considered keystone species.

5.
Photochem Photobiol ; 95(6): 1446-1453, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31074874

RESUMO

Dead Sea climatotherapy (DSC) is a well-established therapeutic modality for the treatment of several diseases, including atopic dermatitis. Skin microbiome studies have shown that skin microbiome diversity is anticorrelated with both atopic dermatitis severity and concurrent Staphylococcus aureus overgrowth. This study aimed to determine whether DSC induces skin microbiome changes concurrent with clinical improvements in atopic dermatitis. We sampled 35 atopic dermatitis patients and ten healthy controls on both the antecubital and popliteal fossa. High-resolution microbial community profiling was attained by sequencing multiple regions of the 16S rRNA gene. Dysbiosis was observed in both lesional and nonlesional sites, which was partially attenuated following treatment. Severe AD skin underwent the most significant community shifts, and Staphylococcus epidermidis, Streptococcus mitis and Micrococcus luteus relative abundance were significantly affected by Dead Sea climatotherapy. Our study highlights the temporal shifts of the AD skin microbiome induced by Dead Sea climatotherapy and offers potential explanations for the success of climatotherapy on a variety of skin diseases, including AD.


Assuntos
Bactérias/classificação , Climatoterapia , Dermatite Atópica/microbiologia , Dermatite Atópica/terapia , Microbiota/fisiologia , Pele/microbiologia , Adolescente , Adulto , Criança , Pré-Escolar , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem
6.
Acta Derm Venereol ; 98(2): 256-261, 2018 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-28815268

RESUMO

Dead Sea climatotherapy (DSC) is a therapeutic modality for a variety of chronic skin conditions, yet there has been scarce research on the relationship between the cutaneous microbiota and disease states in response to DSC. We characterized the skin bacterial and fungal microbiome of healthy volunteers who underwent DSC. Bacterial community diversity remained similar before and after treatment, while fungal diversity was significantly reduced as a result of the treatment. Individuals showed greater inter-individual than temporal bacterial community variance, yet the opposite was true for fungal community composition. We further identified Malassezia as the genus driving temporal mycobiome variations. The results indicate that the microbiome remains stable throughout DSC, while the mycobiome undergoes dramatic community changes. The results of this study will serve as an important baseline for future investigations of microbiome and mycobiome temporal phenomena in diseased states.


Assuntos
Bactérias/crescimento & desenvolvimento , Balneologia/métodos , Climatoterapia/métodos , Fungos/crescimento & desenvolvimento , Helioterapia/métodos , Microbiota , Pele/microbiologia , Bactérias/classificação , Feminino , Fungos/classificação , Voluntários Saudáveis , Humanos , Israel , Malassezia/crescimento & desenvolvimento , Masculino , Micobioma , Fatores de Tempo
7.
Artigo em Inglês | MEDLINE | ID: mdl-28649397

RESUMO

The human skin microbiome plays an important role in both health and disease. Microbial biofilms are a well-characterized mode of surface-associated growth, which present community-like behaviors. Additionally, biofilms are a critical element in certain skin diseases. We review how the perception of the resident skin microbiota has evolved from the early linkages of certain microbes to disease states, to a more comprehensive and intricate understanding brought on by biofilm and microbiome revelations. Rapidly expanding arsenals of experimental methods are opening new horizons in the study of human-microbe and microbe-microbe interactions. Microbial community profiling has largely remained a separate discipline from that of biofilm research, yet the introduction of metatranscriptomics, metabolomics, and the ability to distinguish between dormant and active members of a community have all paved the road toward a convergent cognizance of the encounter between these two microbial disciplines.

8.
Nucleic Acids Res ; 41(9): 4825-34, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23519613

RESUMO

Cell-to-cell variations in protein abundance, called noise, give rise to phenotypic variability between isogenic cells. Studies of noise have focused on stochasticity introduced at transcription, yet the effects of post-transcriptional regulatory processes on noise remain unknown. We study the effects of RyhB, a small-RNA of Escherichia coli produced on iron stress, on the phenotypic variability of two of its downregulated target proteins, using dual chromosomal fusions to fluorescent reporters and measurements in live individual cells. The total noise of each of the target proteins is remarkably constant over a wide range of RyhB production rates despite cells being in stress. In fact, coordinate downregulation of the two target proteins by RyhB reduces the correlation between their levels. Hence, an increase in phenotypic variability under stress is achieved by decoupling the expression of different target proteins in the same cell, rather than by an increase in the total noise of each. Extrinsic noise provides the dominant contribution to the total protein noise over the total range of RyhB production rates. Stochastic simulations reproduce qualitatively key features of our observations and show that a feed-forward loop formed by transcriptional extrinsic noise, an sRNA and its target genes exhibits strong noise filtration capabilities.


Assuntos
Proteínas de Escherichia coli/genética , Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica , Fenótipo , Proteínas de Bactérias/biossíntese , Proteínas de Bactérias/genética , Regulação para Baixo , Escherichia coli/metabolismo , Proteínas de Escherichia coli/biossíntese , Ferro/metabolismo , Pequeno RNA não Traduzido/metabolismo , Superóxido Dismutase/biossíntese , Superóxido Dismutase/genética , Transcrição Gênica
9.
Mol Microbiol ; 76(2): 428-36, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20345668

RESUMO

Living organisms often have to adapt to sudden environmental changes and reach homeostasis. To achieve adaptation, cells deploy motifs such as feedback in their genetic networks, endowing the cellular response with desirable properties. We studied the iron homeostasis network of E. coli, which employs feedback loops to regulate iron usage and uptake, while maintaining intracellular iron at non-toxic levels. Using fluorescence reporters for iron-dependent promoters in bulk and microfluidics-based, single-cell experiments, we show that E. coli cells exhibit damped oscillations in gene expression, following sudden reductions in external iron levels. The oscillations, lasting for several generations, are independent of position along the cell cycle. Experiments with mutants in network components demonstrate the involvement of iron uptake in the oscillations. Our findings suggest that the response is driven by intracellular iron oscillations large enough to induce nearly full network activation/deactivation. We propose a mathematical model based on a negative feedback loop closed by rapid iron uptake, and including iron usage and storage, which captures the main features of the observed behaviour. Taken together, our results shed light on the control of iron metabolism in bacteria and suggest that the oscillations represent a compromise between the requirements of stability and speed of response.


Assuntos
Escherichia coli/metabolismo , Regulação Bacteriana da Expressão Gênica , Homeostase , Ferro/metabolismo , Retroalimentação Fisiológica , Fluorescência , Genes Reporter , Microfluídica , Modelos Teóricos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...